Fast Gaussian wavepacket transforms and Gaussian beams for the Schrödinger equation
نویسندگان
چکیده
This paper introduces a wavepacket-transform-based Gaussian beam method for solving the Schrödinger equation. We focus on addressing two computational issues of the Gaussian beam method: how to generate a Gaussian beam representation for general initial conditions and how to perform long time propagation for any finite period of time. To address the first question, we introduce fast Gaussian wavepacket transforms and develop on top of them an efficient initialization algorithm for general initial conditions. Based on this new initialization algorithm, we address the second question by reinitializing the beam representation when the beams become too wide. Numerical examples in one, two, and three dimensions demonstrate the efficiency and accuracy of the proposed algorithms. The methodology can be readily generalized to deal with other semi-classical quantum mechanical problems. 2010 Elsevier Inc. All rights reserved.
منابع مشابه
Fast Multiscale Gaussian Wavepacket Transforms and Multiscale Gaussian Beams for the Wave Equation
We introduce a new multiscale Gaussian beam method for the numerical solution of the wave equation with smooth variable coefficients. The first computational question addressed in this paper is how to generate a Gaussian beam representation from general initial conditions for the wave equation. We propose fast multiscale Gaussian wavepacket transforms and introduce a highly efficient algorithm ...
متن کاملFast Gaussian wavepacket transforms and Gaussian beams for the Schrödinger equation
Article history: Received 1 March 2010 Received in revised form 27 May 2010 Accepted 28 June 2010 Available online 21 July 2010
متن کاملFast multiscale Gaussian beam methods for wave equations in bounded convex domains
Motivated by fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beam methods which were originally designed for pure initial-value problems of wave equations, we develop fast multiscale Gaussian beam methods for initial boundary value problems of wave equations in bounded convex domains in the high frequency regime. To compute the wave propagation in bounded convex domains, ...
متن کاملDiffraction-free beams in fractional Schrödinger equation
We investigate the propagation of one-dimensional and two-dimensional (1D, 2D) Gaussian beams in the fractional Schrödinger equation (FSE) without a potential, analytically and numerically. Without chirp, a 1D Gaussian beam splits into two nondiffracting Gaussian beams during propagation, while a 2D Gaussian beam undergoes conical diffraction. When a Gaussian beam carries linear chirp, the 1D b...
متن کاملEulerian Gaussian beams for Schrödinger equations in the semi-classical regime
We propose Gaussian-beam based Eulerian methods to compute semi-classical solutions of the Schrödinger equation. Traditional Gaussian beam type methods for the Schrödinger equation are based on the Lagrangian ray tracing. We develop a new Eulerian framework which uses global Cartesian coordinates, level-set based implicit representation and Liouville equations. The resulting method gives unifor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 229 شماره
صفحات -
تاریخ انتشار 2010